Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Very long baseline interferometry observations reveal that relativistic jets like the one in M87 have a limb-brightened, double-edged structure. Analytic and numerical models struggle to reproduce this limb-brightening. We propose a model in which we invoke anisotropy in the distribution function of synchrotron-emitting nonthermal electrons such that electron velocities are preferentially directed parallel to magnetic field lines, as suggested by recent particle-in-cell simulations of electron acceleration and the effects of synchrotron cooling. We assume that the energy injected into nonthermal electrons is proportional to the jet Poynting flux, and we account for synchrotron cooling via a broken power-law energy distribution. We implement our emission model in both general relativistic magnetohydrodynamic (GRMHD) simulations and axisymmetric force-free electrodynamic (GRFFE) jet models and produce simulated jet images at multiple scales and frequencies using polarized general relativistic radiative transfer. We find that the synchrotron emission is concentrated parallel to the local helical magnetic field and that this feature produces limb-brightened jet images on scales ranging from tens of microarcseconds to hundreds of milliarcseconds in M87. We present theoretical predictions for horizon-scale M87 jet images at 230 and 345 GHz that can be tested with next-generation instruments. Due to the scale-invariance of the GRMHD and GRFFE models, our emission prescription can be applied to other targets and serve as a foundation for a unified description of limb-brightened synchrotron images of extragalactic jets.more » « lessFree, publicly-accessible full text available April 23, 2026
-
Abstract The Event Horizon Telescope (EHT) has produced resolved images of the supermassive black holes (SMBHs) Sgr A* and M87*, which present the largest shadows on the sky. In the next decade, technological improvements and extensions to the array will enable access to a greater number of sources, unlocking studies of a larger population of SMBHs through direct imaging. In this paper, we identify 12 of the most promising sources beyond Sgr A* and M87* based on their angular size and millimeter flux density. For each of these sources, we make theoretical predictions for their observable properties by ray tracing general relativistic magnetohydrodynamic models appropriately scaled to each target’s mass, distance, and flux density. We predict that these sources would have somewhat higher Eddington ratios than M87*, which may result in larger optical and Faraday depths than previous EHT targets. Despite this, we find that visibility amplitude size constraints can plausibly recover masses within a factor of 2, although the unknown jet contribution remains a significant uncertainty. We find that the linearly polarized structure evolves substantially with the Eddington ratio, with greater evolution at larger inclinations, complicating potential spin inferences for inclined sources. We discuss the importance of 345 GHz observations, milli-Jansky baseline sensitivity, and independent inclination constraints for future observations with upgrades to the EHT through ground updates with the next-generation EHT program and extensions to space through the black hole Explorer.more » « lessFree, publicly-accessible full text available May 13, 2026
-
Coyle, Laura E; Perrin, Marshall D; Matsuura, Shuji (Ed.)
-
Abstract Frequency phase transfer (FPT) is a technique designed to increase coherence and sensitivity in radio interferometry by making use of the nondispersive nature of the troposphere to calibrate high-frequency data using solutions derived at a lower frequency. While the Korean very long baseline interferometry (VLBI) network has pioneered the use of simultaneous multiband systems for routine FPT up to an observing frequency of 130 GHz, this technique remains largely untested in the (sub)millimeter regime. A recent effort has been made to outfit dual-band systems at (sub)millimeter observatories participating in the Event Horizon Telescope (EHT) and to test the feasibility and performance of FPT up to the observing frequencies of the EHT. We present the results of simultaneous dual-frequency observations conducted in 2024 January on an Earth-sized baseline between the IRAM 30-m in Spain and the James Clerk Maxwell Telescope (JCMT) and Submillimeter Array (SMA) in Hawai‘i. We performed simultaneous observations at 86 and 215 GHz on the bright sources J0958+6533 and OJ 287, with strong detections obtained at both frequencies. We observe a strong correlation between the interferometric phases at the two frequencies, matching the trend expected for atmospheric fluctuations and demonstrating for the first time the viability of FPT for VLBI at a wavelength of ∼1 millimeter. We show that the application of FPT systematically increases the 215 GHz coherence on all averaging timescales. In addition, the use of the colocated JCMT and SMA as a single dual-frequency station demonstrates the feasibility of paired-antenna FPT for VLBI for the first time, with implications for future array capabilities (e.g., Atacama Large Millimeter/submillimeter Array subarraying and ngVLA calibration strategies).more » « lessFree, publicly-accessible full text available March 26, 2026
-
General relativity predicts that images of optically thin accretion flows around black holes should generically have a “photon ring”, composed of a series of increasingly sharp subrings that correspond to increasingly strongly lensed emission near the black hole. Because the effects of lensing are determined by the spacetime curvature, the photon ring provides a pathway to precise measurements of the black hole properties and tests of the Kerr metric. We explore the prospects for detecting and measuring the photon ring using very long baseline interferometry (VLBI) with the Event Horizon Telescope (EHT) and the next-generation EHT (ngEHT). We present a series of tests using idealized self-fits to simple geometrical models and show that the EHT observations in 2017 and 2022 lack the angular resolution and sensitivity to detect the photon ring, while the improved coverage and angular resolution of ngEHT at 230 GHz and 345 GHz is sufficient for these models. We then analyze detection prospects using more realistic images from general relativistic magnetohydrodynamic simulations by applying “hybrid imaging”, which simultaneously models two components: a flexible raster image (to capture the direct emission) and a ring component. Using the Bayesian VLBI modeling package Comrade.jl, we show that the results of hybrid imaging must be interpreted with extreme caution for both photon ring detection and measurement—hybrid imaging readily produces false positives for a photon ring, and its ring measurements do not directly correspond to the properties of the photon ring.more » « less
-
Abstract We present the results of an Atacama Large Millimeter/submillimeter Array survey to identify 183 GHz H2O maser emission from active galactic nuclei (AGNs) already known to host 22 GHz megamaser systems. Out of 20 sources observed, we detect significant 183 GHz maser emission from 13; this survey thus increases the number of AGN known to host (sub)millimeter megamasers by a factor of 5. We find that the 183 GHz emission is systematically fainter than the 22 GHz emission from the same targets, with typical flux densities being roughly an order of magnitude lower at 183 GHz than at 22 GHz. However, the isotropic luminosities of the detected 183 GHz sources are comparable to their 22 GHz values. For two of our sources—ESO 269-G012 and the Circinus galaxy—we detect rich 183 GHz spectral structure containing multiple line complexes. The 183 GHz spectrum of ESO 269-G012 exhibits the triple-peaked structure characteristic of an edge-on AGN disk system. The Circinus galaxy contains the strongest 183 GHz emission detected in our sample, peaking at a flux density of nearly 5 Jy. The high signal-to-noise ratios achieved by these strong lines enable a coarse mapping of the 183 GHz maser system, in which the masers appear to be distributed similarly to those seen in VLBI maps of the 22 GHz system in the same galaxy and may be tracing the circumnuclear accretion disk at larger orbital radii than the 22 GHz masers. This newly identified population of AGN disk megamasers presents a motivation for developing VLBI capabilities at 183 GHz.more » « less
-
We present estimates for the number of supermassive black holes (SMBHs) for which the next-generation Event Horizon Telescope (ngEHT) can identify the black hole “shadow”, along with estimates for how many black hole masses and spins the ngEHT can expect to constrain using measurements of horizon-resolved emission structure. Building on prior theoretical studies of SMBH accretion flows and analyses carried out by the Event Horizon Telescope (EHT) collaboration, we construct a simple geometric model for the polarized emission structure around a black hole, and we associate parameters of this model with the three physical quantities of interest. We generate a large number of realistic synthetic ngEHT datasets across different assumed source sizes and flux densities, and we estimate the precision with which our defined proxies for physical parameters could be measured from these datasets. Under April weather conditions and using an observing frequency of 230 GHz, we predict that a “Phase 1” ngEHT can potentially measure ∼50 black hole masses, ∼30 black hole spins, and ∼7 black hole shadows across the entire sky.more » « less
-
Building on the base of the existing telescopes of the Event Horizon Telescope (EHT) and ALMA, the next-generation EHT (ngEHT) aspires to deploy ∼10 more stations. The ngEHT targets an angular resolution of ∼15 microarcseconds. This resolution is achieved using Very Long Baseline Interferometry (VLBI) at the shortest radio wavelengths ∼1 mm. The Submillimeter Array (SMA) is both a standalone radio interferometer and a station of the EHT and will conduct observations together with the new ngEHT stations. The future EHT + ngEHT array requires a dedicated correlator to process massive amounts of data. The current correlator-beamformer (CBF) of the SMA would also benefit from an upgrade, to expand the SMA’s bandwidth and also match the EHT + ngEHT observations. The two correlators share the same basic architecture, so that the development time can be reduced using common technology for both applications. This paper explores the prospects of using Tensor Core Graphics Processing Units (TC GPU) as the primary digital signal processing (DSP) engine. This paper describes the architecture, aspects of the detailed design, and approaches to performance optimization of a CBF using the “FX” approach. We describe some of the benefits and challenges of the TC GPU approach.more » « less
-
Abstract The direct detection of a bright, ring-like structure in horizon-resolving images of M87* by the Event Horizon Telescope (EHT) is a striking validation of general relativity. The angular size and shape of the ring is a degenerate measure of the location of the emission region, mass, and spin of the black hole. However, we show that the observation of multiple rings, corresponding to the low-order photon rings, can break this degeneracy and produce mass and spin measurements independent of the shape of the rings. We describe two potential experiments that would measure the spin. In the first, observations of the direct emission and n = 1 photon ring are made at multiple epochs with different emission locations. This method is conceptually similar to spacetime constraints that arise from variable structures (or hot spots) in that it breaks the near-perfect degeneracy between emission location, mass, and spin for polar observers using temporal variability. In the second, observations of the direct emission and n = 1 and n = 2 photon rings are made during a single epoch. For both schemes, additional observations comprise a test of general relativity. Thus, comparisons of EHT observations in 2017 and 2018 may be capable of producing the first horizon-scale spin estimates of M87* inferred from strong lensing alone. Additional observation campaigns from future high-frequency, Earth-sized, and space-based radio interferometers can produce high-precision tests of general relativity.more » « less
-
Abstract The Event Horizon Telescope (EHT) has produced images of the plasma flow around the supermassive black holes in Sgr A* and M87* with a resolution comparable to the projected size of their event horizons. Observations with the next-generation Event Horizon Telescope (ngEHT) will have significantly improved Fourier plane coverage and will be conducted at multiple frequency bands (86, 230, and 345 GHz), each with a wide bandwidth. At these frequencies, both Sgr A* and M87* transition from optically thin to optically thick. Resolved spectral index maps in the near-horizon and jet-launching regions of these supermassive black hole sources can constrain properties of the emitting plasma that are degenerate in single-frequency images. In addition, combining information from data obtained at multiple frequencies is a powerful tool for interferometric image reconstruction, since gaps in spatial scales in single-frequency observations can be filled in with information from other frequencies. Here we present a new method of simultaneously reconstructing interferometric images at multiple frequencies along with their spectral index maps. The method is based on existing regularized maximum likelihood (RML) methods commonly used for EHT imaging and is implemented in theeht-imagingPython software library. We show results of this method on simulated ngEHT data sets as well as on real data from the Very Long Baseline Array and Atacama Large Millimeter/submillimeter Array. These examples demonstrate that simultaneous RML multifrequency image reconstruction produces higher-quality and more scientifically useful results than is possible from combining independent image reconstructions at each frequency.more » « less
An official website of the United States government
